Dementia-Free Survival Among Centenarians: An Evidence-Based Review

James F. Calvert, Jr.,1,5 Joyce Hollander-Rodriguez,1 Jeffrey Kaye,2,3,4 and Marjorie Leahy5

Departments of 1Family Medicine, 2Neurology, and 3Biomedical Engineering, Oregon Health & Science University, Portland. 4Portland Veterans Affairs Medical Center, Oregon. 5Merle West Center for Medical Research, Klamath Falls, Oregon.

Background. The 2000 U.S. census identified 50,454 Americans older than 100 years (18 per 100,000). Increased longevity is only of benefit if accompanied by the maintenance of physical, social, and cognitive function into advanced age. The goal of this review was to identify research describing centenarians to find the prevalence of dementia-free survival.

Methods. We reviewed 650 publications to find studies that described the prevalence of dementia in centenarians, were community-based, had data that were specific to persons older than 100 years, and were published in peer-reviewed journals. For each study, we identified the prevalence of dementia, the completeness of the sample, the number of study participants, the method used to diagnose dementia, and the duration of the study.

Results. We identified 20 research groups from 14 countries with publications meeting our search criteria. The studies showed substantial variation in methods of assessing cognitive status, assuring a complete cohort, and sample size. Few studies reported longitudinal data or attempted diagnosis of the cause of dementia. The prevalence of dementia-free survival past 100 years of age varied between 0 and 50 percent.

Conclusions. The methodology used in studies regarding dementia prevalence among centenarians is sufficiently varied that combination of existing studies into a meta-analysis is not possible. Suggestions for assuring quality in future centenarian research are presented.

Although dementia and other disability may come to all of us if we live long enough, even very frail centenarians are often found to be healthy into their 90s (1–4). For this reason, centenarians provide models for healthy aging (4,5), and centenarian studies can guide provision of care for an aging population.

Meta-analyses of current data regarding elderly persons between the ages of 65 and 90 indicate that the rate at which new cases of dementia occur doubles every 5 years after the age of 65. For example, new cases of dementia occur in about 6% of persons in their 85th year and 12% in their 90th, with prevalence rates of 25 and 35 percent (6–9). In this article we critically review studies about the prevalence of dementia in the centenarian age group to see if a meta-analysis could show if dementia incidence and prevalence continue to increase in this age group. We also seek to identify factors that would improve the quality of future studies of centenarians.

Methods. We searched Medline and other data bases to identify studies describing centenarians. Key words used included “centenarians,” “nonagenarians,” “prevalence,” “dementia,” and “epidemiology.” We reviewed the citations in articles from the computerized searches to identify older studies, and sought the advice of experts to find more studies. This strategy identified 650 publications. We reviewed these publications to identify studies regarding the prevalence of dementia among centenarians. To be included, studies had to be community-based, contain prevalence data for dementia in persons older than 100 years, and be published in peer-reviewed journals. After a community-based study had been identified, every effort was made to find all articles related to the study. The studies were then rated [on the basis of accepted criteria for studies involving prognosis (10)] by two of the authors (JC and JHR) on six quality indicators as shown in Tables 1 and 2. The studies regarding the prevalence of dementia in centenarians are summarized in Table 3 (11–39).

Results. We identified 20 studies from 14 countries that met our search criteria. Other centenarian studies have indicated plans to study dementia prevalence data, but we were unable to find published results (40–42). Additional centenarian studies have not reported prevalence of dementia (43–46) or were not community-based (47), so they are not included in Table 3.

The likelihood of dementia-free survival after the age of 100 varied between 0% in smaller studies to as much as 50% in other studies (see Table 3). All the studies in Table 3 found more female than male centenarians, although in Sardinia (41,48) and among the Uygur people of China (44) the proportion of men is higher. The studies in Table 3 that reported gender data indicate that male centenarians are more likely to be intact cognitively than their female contemporaries, possibly because men tend to die more quickly after they become demented than women do.
Table 1. Criteria Used to Evaluate Centenarian Studies

1. Validity: Did the study involve centenarians exclusively, and was a reliable method used to identify the centenarians in the region?
 (++) Total centenarian population for the study region was identified using an accurate database.
 (+) Unreliable database was used, but it only includes centenarians.
 (0) Data for centenarians cannot be separated from younger cohort data.

2. Inclusiveness: Was complete ascertainment achieved?
 (++) Eligible patients were accounted for, including those who died before being seen; reasons for exclusion were specified.
 (+) Most eligible participants were included in the study, but reasons for exclusion were not specified.
 (0) An attempt to account for all eligible participants was not made, or less than half of the eligible participants were included in the study.

3. Sample size: Was the sample large enough for generalizable conclusions?
 (++) Sample >100 centenarians
 (+) Sample 50–99 centenarians
 (0) Sample <50 centenarians

4. Sampling frequency: Were study participants followed longitudinally?
 (++) More than two determinations of cognitive status were made at different points in time for each participant.
 (+) At least two assessments were made.
 (0) Only one assessment was made.

5. Cognitive and functional assessment: Was dementia identified in a reliable, standardized manner?
 (++) The methods used to identify dementia were validated and widely accepted.
 (+) The method used to assess cognitive status was specified but not widely used enough to allow comparisons with other studies.
 (0) The method used to define cognitive status was not specified.

6. Diagnosis: Was an attempt made to identify the specific cause of dementia?
 (++) Each demented patient was evaluated by an accepted method to determine the cause of dementia.
 (+) Diagnosis was made, but the criteria were not specified or not applied to the whole cohort.
 (0) No attempt at diagnosis was made, only specified as dementia.

(20,49–51). Unfortunately, because of the variation in methodology used in different centenarian studies, no definitive conclusion regarding the likelihood of dementia-free survival past 100 years of age is possible.

DISCUSSION

The small number of study participants in most of the studies in Table 3 suggests that meta-analysis, which has been used to determine the prevalence and incidence of dementia for younger age groups (5–9) could be used to combine data from the studies in Table 3. However, the inconsistency in methods in the centenarian studies in Table 3 makes meta-analysis inappropriate. The definition of dementia is not consistent from study to study. The method used to assess patients also varies; studies have shown that very elderly persons may appear intact when one method of assessment is used, but impaired when other scales are used (52). Sampling methods vary as well; some studies have convenience samples, whereas others make an effort to get a complete population sample (Table 2). The rest of the discussion follows the six criteria from Table 1.

Table 2. Scoring for Studies in Table 3 Based on Criteria From Table 1

<table>
<thead>
<tr>
<th>Principal Investigator (Ref.)</th>
<th>1 Validity</th>
<th>2 Inclusiveness</th>
<th>3 Sample Size</th>
<th>4 Sampling Frequency</th>
<th>5 Assessment</th>
<th>6 Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beregei (11)</td>
<td>1++</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Homma (12)</td>
<td>0++</td>
<td>++</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Heeren (13)</td>
<td>0++</td>
<td>0+</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Robine (14)</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Poon (15)</td>
<td>0++</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wernicke (16,17)</td>
<td>0++</td>
<td>0+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Liverpool (18,19)</td>
<td>0++</td>
<td>0+</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Eby (20)</td>
<td>0++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sobel (21)</td>
<td>0++</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Asada (22)</td>
<td>0++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Samuelson (23)</td>
<td>0++</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Blansjaar (24,25)</td>
<td>0++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ott (26)</td>
<td>0++</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Silver (27,28)</td>
<td>0++</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Franceschi (29–31)</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ravaglia (32)</td>
<td>0++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Anderson-Ranberg (33,34)</td>
<td>++</td>
<td>2</td>
<td>++</td>
<td>0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Von Strauss (35,36)</td>
<td>0++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rott (37,38)</td>
<td>0++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Choi (39)</td>
<td>0+</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Validity

As only 1 in 5500 persons in developed countries lives to the age of 100, large populations must be sampled to get an adequate number for research. Formal age verification of centenarians (e.g., birth records) further challenges the ascertainment of centenarians (53). All but one (18) of the studies in Table 3 used census data to identify centenarians. Census data may accurately identify the birth date of citizens but, because of the high mortality rate in this age group, many deceased persons are listed so the total number is often unreliable. Centenarians who live in long-term care facilities are accessible (47); however, they tend to be less functional than are those persons living independently, leading to an overestimation of the prevalence of impairment. In the community, centenarians who are more intact may be more likely to be willing to volunteer to be study participants, leading to underestimation of dementia prevalence. Several “centenarian” studies included persons 95–99 years old; we included those studies in Table 3 (13,16,26), but these studies cloud the picture because they do not provide centenarian-specific data.

Inclusiveness

A number of unique challenges lead to a high refusal rate when centenarians identified by census data are contacted. Elderly survivors tend to be socially isolated because their peer group is deceased. The principal social contact of
Table 3. Studies Assessing the Cognitive Status of the Oldest Old

<table>
<thead>
<tr>
<th>Project Name (Ref.)</th>
<th>Authors (Date, Setting)</th>
<th>Population</th>
<th>Tests Used</th>
<th>Results (Non-demented is CDR 0 or 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Centenarian Study (11)</td>
<td>Beregei et al. (Hungary, 1989)</td>
<td>123/218 centenarians identified by national census</td>
<td>Not specified</td>
<td>26% of men and 63% of women demented; total demented and N for gender not specified</td>
</tr>
<tr>
<td>Japan Centenarian Study (12)</td>
<td>Homma et al. (Japan, 1990)</td>
<td>218/509 (43%) of centenarians in Tokyo consented to be interviewed, no data on 12, total = 206</td>
<td>CDR scale, Hasegawa Dementia Scale</td>
<td>67% (137/206) demented, 48% (27/56) of men and 73% (110/150) of women</td>
</tr>
<tr>
<td>Dutch Aging Study (Heeren et al.) (13)</td>
<td>The Netherlands, 1991</td>
<td>Of 1259 persons >85 y in Leiden, 28 were >95 y</td>
<td>Screened with MMSE: if <24, GMS and MBPC and CDR</td>
<td>100% (28/28) at least mildly demented (tables in article inconsistent)</td>
</tr>
<tr>
<td>French Centenarian Study (14)</td>
<td>Robinet al. (France, 1991)</td>
<td>756/3800 centenarians identified by French census</td>
<td>PSPMSQ</td>
<td>62% of 756 demented; 65% (431/663) of women and 42% (39/93) of men</td>
</tr>
<tr>
<td>Georgia Centenarian Study (15)</td>
<td>Poon et al. (United States, 1992)</td>
<td>84 persons >100 years, 23 males</td>
<td>WAIS, various memory tests, MMSE</td>
<td>Some not demented, specific numbers not given</td>
</tr>
<tr>
<td>Berlin Aging Study (16,17)</td>
<td>Wemicke et al. (Germany, 1994)</td>
<td>26 persons ≥95</td>
<td>GMS-A2, DSM-III</td>
<td>42% (11/26) demented; 6 women and 5 men; totals not given for gender</td>
</tr>
<tr>
<td>Liverpool MRC-ALPHA study (18,19)</td>
<td>Saunders et al. (England, 1992)</td>
<td>15/5222 elderly persons from records of general practitioners, followed every 2 years until death</td>
<td>MMSE and AGECAT</td>
<td>47% (7/15) demented; 0/1 men, 7/14 women</td>
</tr>
<tr>
<td>Canadian Study of Health and Aging (CSHA; 20)</td>
<td>Ebly et al. (Canada, 1994)</td>
<td>13/2800 persons >85 y, national random sample</td>
<td>3MS score</td>
<td>85% (11/13) demented; gender data not given</td>
</tr>
<tr>
<td>Finnish Centenarian Study (21)</td>
<td>Sobel et al. (Finland, 1995)</td>
<td>Census data used to find 271 centenarians; 179 examined fully; 86 died before being seen</td>
<td>DSM-III clinical criteria and PSPMSQ</td>
<td>33% (59/179) demented, 18% (5/28) of men and 36% (54/151) of women (authors excluded mild dementia)</td>
</tr>
<tr>
<td>Yamanashi prefecture study (22)</td>
<td>Asada et al. (Japan, 1996)</td>
<td>47/50 persons >100 y in Yamanashi prefecture; 8 were men; 3 died before being seen</td>
<td>ADLs, Hasegawa Dementia Scale, personal interview</td>
<td>70% (33/47) demented; gender data not given</td>
</tr>
<tr>
<td>Swedish Centenarian Study (23)</td>
<td>Sameulsson et al. (Sweden, 1997)</td>
<td>98/143 eligible persons agreed to be studied on 100th birthday</td>
<td>DSM-III-Revised, WAIS, other functional and memory tests</td>
<td>73% (72/98) demented; 56% (10/18) of men and 80% (65/82) of women</td>
</tr>
<tr>
<td>Rotterdam Study (26)</td>
<td>Ott et al. (Holland, 1998)</td>
<td>24 persons >95 y had both baseline and follow-up testing 3 y later</td>
<td>Screened with MMSE and GMS-A: if MMSE < 26, CAMDEX and neurologic assessment</td>
<td>3/21 women and 0/9 men developed dementia; baseline prevalence not stated</td>
</tr>
<tr>
<td>New England Centenarian Study (27,28)</td>
<td>Silver et al. (United States, 1994–present)</td>
<td>1998: 69 centenarians studied</td>
<td>CDR, MMSE, Boston Naming, MDRS, CERAD battery</td>
<td>1998: 80% (55/69) demented; no gender data</td>
</tr>
<tr>
<td>Italian Multicenter Study on Centenarians (29–31)</td>
<td>Franchesci et al. (Italy, 2000–2005)</td>
<td>382/1162 Italian centenarians, random sample</td>
<td>If MMSE, score < 5, proxy used; CDT used also; 3 outcome levels: A: Healthy, B: Indeterminate, C: Unhealthy</td>
<td>Group A: 22% (85/382), 19% (58/303) of women, 34% (27/79) of men</td>
</tr>
<tr>
<td>Northern Italian Centenarian Study (32)</td>
<td>Ravaglia et al. (Italy, 1999)</td>
<td>92/154 centenarians identified by census data</td>
<td>ADL assessment, MMSE, CDR scale used</td>
<td>Group B: 30% (113/382), 30% (92/303) of women, 27% (217/79) of men</td>
</tr>
</tbody>
</table>

DEMENTIA AMONG CENTENARIANS
centenarians is typically a child or other relative who is protective of “their” centenarian. They may view participation as too demanding of a frail elderly persons (54). Elderly persons are generally not attracted by any personal health benefits that might result from participation in medical research, although the idea of “being useful to someone” may motivate them to volunteer to be a research participant (55).

The high mortality rate among very old persons can also affect research results; deaths which occur during the study period can lead to an underestimation of dementia rates because impaired participants may die before they can be assessed. Longitudinal studies indicate that the interval between the onset of dementia and death shortens with increasing age. This means that populations that survive into extreme old age might be expected to have a lower prevalence of dementia, because demented centenarians tend to die after the onset of dementia with less delay than do younger cohorts (2,4,56).

Another limitation of the studies in Table 3 is that most took place in industrialized nations among urban populations. Little research about centenarians in developing countries has been done. Sample sizes for minorities and other special populations are generally small in centenarian studies, so distinctions between these and the majority population are not possible. Rural areas may contain a higher proportion of elderly persons than metropolitan areas (54), but the rural elderly population is underrepresented in research (1), and most published studies include few rural centenarians.

Perhaps because of the reasons cited above, many studies use information obtained from proxies rather than from the centenarians themselves. It is unclear whether information from proxies is more or less accurate than that obtained from the elderly participants themselves. The Heidelberg study group compared proxy and study participant interviews in a group of 85 centenarians and found that centenarians tended to overrate their Activities of Daily Living capability and that their self-ratings were highly mood-dependent (57). This finding occurs in younger elderly persons as well (58).

Sample Size

Sample size in the community-based studies in Table 3 varied from 13 to more than 700. The logistical difficulties outlined above and the time involved in performing a careful assessment of a centenarian are barriers to achieving adequate sample size. Small samples may limit the generalizability of prevalence estimates; however, smaller samples may allow a more thorough and accurate assessment.

Cognitive and Functional Assessment

Detailed cognitive assessment is not always performed in centenarian studies. Some of the studies in Table 3 used screening measures such as the Mini-Mental State Examination rather than more comprehensive tools. The Clinical Dementia Rating scale, which may vary in its administration and is difficult to use in field studies, was the most commonly used test. Although cognitive function is the most important driver of the final score, performing a Clinical Dementia Rating involves an assessment of Activities of Daily Living, physical health, and cognitive function, whereas other scales may provide only an assessment of mental status. However, physical health and cognitive function are closely interrelated in this age group, so it is

Table 3. Studies Assessing the Cognitive Status of the Oldest Old (Continued)

<table>
<thead>
<tr>
<th>Project Name (Ref.) Authors (Date, Setting)</th>
<th>Population</th>
<th>Tests Used</th>
<th>Results (Nondemented is CDR 0 or 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Longitudinal Study of Danish Centenarians (LSDC)” (33,34) Anderson-Ranberg et al. Denmark, 1999</td>
<td>207/276 persons who turned 100 over a 1-year period; 78% (162) women</td>
<td>CDR, MMSE, ADL</td>
<td>51% (105) were demented; no gender data</td>
</tr>
<tr>
<td>Kungsholmén Project (35,36) von Strauss et al. Sweden, 2000</td>
<td>94/145 persons ≥95 y; 8 were centenarians, data not given separately</td>
<td>MMSE; detailed clinical interviews, neuropsychological battery</td>
<td>48% (45/94) had CDR of 2 or 3; 30% (3/10) of men and 50% (42/84) of women</td>
</tr>
<tr>
<td>Heidelberg Centenarian Study (37,38) Rott C et al. Germany, 2001</td>
<td>91/156 (58%) of centenarians studied; in a follow-up visit 18 months later 36 were studied, 54% (49/91) had died</td>
<td>MMSE, GDS</td>
<td>71% (65/91) were demented at the first visit and 75% (31/41) at second visit; gender data not given</td>
</tr>
<tr>
<td>Korean Centenarian Study (39) Choi et al. Korea, 1999</td>
<td>89/103 centenarians identified from census data</td>
<td>CDR</td>
<td>62% (55/89) demented, 46% (5/11) of men and 64% (50/78) of women</td>
</tr>
</tbody>
</table>

Notes: The Dutch Aging Study (10), Berlin Aging Study (16,17), Rotterdam Study (26), and Kungsholmén Project (35,36) did not separate data regarding data from 90- to 99-year-old participants from centenarian data. For the totals in the “Results” column, we used a Clinical Dementia Rating (CDR) scale score of ≥1 to define dementia when possible; some authors used a different cutoff in their publications or did not use the CDR scale.

AGECAT = Automatic Geriatric Examination for Computer Assisted Taxonomy; GMS = Geriatric Mental State Schedule; MMSE = Mini-Mental State Examination; MBPC = Memory and Behavior Problem Checklist; CAMDEX = Cambridge Examination for Mental Disorders in the Elderly; MDRS = Mattis Dementia Rating Scale; GDS = Global Deterioration Score; PSPMSQ = Pfeiffer’s Short Portable Mental Status Questionnaire; BRMC = Blessed Roth Memory-Concentration Test; CDT = Clock Drawing Test; DSM-III = Diagnostic and Statistical Manual of Mental Disorders, Third Edition; 3MS = Modified Mini-Mental Status Examination; ADLs = Activities of Daily Living; WAIS = Wechsler Adult Intelligence Test; IQCODE = Informant Questionnaire on Cognitive Decline in the Elderly; ADS-3 = Amsterdam Dementia Screening Text; CERAD = Consortium to Establish a Registry of Alzheimer Disease.
important to assess both (2,23). Failure to recognize the normal cognitive and physical changes in very old persons leads to an overestimation of the prevalence of dementia or physical impairment among centenarians (2). Similarly, special assessment scales and great patience are required to provide an accurate assessment of a motorically, visually, or hearing-impaired elderly person (33,55).

Need for Multiple Assessments

Increasing age is associated with increased variability on testing, so that studies that involve only one assessment of elderly persons tend to give a less accurate assessment than do those that involve multiple assessments over time. The increased mortality rate of about 50% annually in centenarians makes follow-up more difficult in this age group (37); another factor is the extended interview time needed because centenarians tire so easily. Few of the studies in Table 2 used longitudinal assessments. Some studies indicate that they are following patients longitudinally, but longitudinal data have not been published (27,32,40).

Diagnosis

Few of the studies in Table 3 tried to identify the specific cause of dementia. Existing data indicate that the majority of cases of dementia in younger age groups are due to Alzheimer dementia (8,20); however, the causes of cognitive decline in very old persons are not known. Diagnosis is a particularly challenging problem while study participants are alive, although criteria are available for clinical diagnosis of common causes of dementia (16). Even neuropathologic examination of brains after death, often considered the gold standard of diagnosis, may show evidence of more than one form of dementia or be inconclusive in other ways (59).

Conclusion

Current evidence does not provide robust estimates of the prevalence of dementia among centenarians because of inconsistency of the methods used in various studies. Application of consensus standards regarding the optimal assessment methods for centenarian research would improve our understanding of the dynamic demographics of the oldest old and provide direction for future research on the health of this important population.

Acknowledgments

This work was supported by grants from Merle West Center for Medical Research; Northwest Health Foundation; the Alzheimer’s Research Alliance of Oregon; the Department of Veterans Affairs; and the National Institute on Aging, National Institutes of Health (AG8017).

A more complete reference list is available on request from the authors.

Address correspondence to James Calvert, MD, 1453 Esplanade, Klamath Falls, OR 97601. E-mail: calvertj@ohsu.edu

References

Received October 7, 2005
Accepted April 21, 2006

Decision Editor: Darryl Wieland, PhD, MPH